Copied to
clipboard

G = C12.12C42order 192 = 26·3

5th non-split extension by C12 of C42 acting via C42/C2xC4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C12.12C42, (C2xC24):16C4, (C2xC8):9Dic3, C24.85(C2xC4), C24:C4:32C2, (C2xC8).328D6, (C8xDic3):25C2, C6.15(C8oD4), C2.4(C8oD12), C4.Dic3:11C4, C4:Dic3.24C4, (C22xC8).18S3, C6.24(C2xC42), (C2xC6).26C42, C23.36(C4xS3), C4.12(C4xDic3), C8.27(C2xDic3), C3:4(C8o2M4(2)), (C22xC24).30C2, (C22xC4).436D6, (C2xC12).856C23, C12.139(C22xC4), (C2xC24).434C22, C6.D4.14C4, C4.33(C22xDic3), C22.12(C4xDic3), (C22xC12).537C22, (C4xDic3).281C22, C23.26D6.26C2, C3:C8.15(C2xC4), C4.113(S3xC2xC4), C22.59(S3xC2xC4), C2.12(C2xC4xDic3), (C2xC4).112(C4xS3), (C2xC12).234(C2xC4), (C2xC3:C8).319C22, (C22xC6).91(C2xC4), (C2xC4).80(C2xDic3), (C2xC4).798(C22xS3), (C2xC6).126(C22xC4), (C2xDic3).65(C2xC4), (C2xC4.Dic3).30C2, SmallGroup(192,660)

Series: Derived Chief Lower central Upper central

C1C6 — C12.12C42
C1C3C6C2xC6C2xC12C4xDic3C23.26D6 — C12.12C42
C3C6 — C12.12C42
C1C2xC8C22xC8

Generators and relations for C12.12C42
 G = < a,b,c | a12=b4=1, c4=a6, bab-1=a-1, ac=ca, bc=cb >

Subgroups: 216 in 130 conjugacy classes, 87 normal (27 characteristic)
C1, C2, C2, C2, C3, C4, C4, C4, C22, C22, C22, C6, C6, C6, C8, C8, C2xC4, C2xC4, C2xC4, C23, Dic3, C12, C12, C2xC6, C2xC6, C2xC6, C42, C22:C4, C4:C4, C2xC8, C2xC8, C2xC8, M4(2), C22xC4, C3:C8, C24, C2xDic3, C2xC12, C2xC12, C22xC6, C4xC8, C8:C4, C42:C2, C22xC8, C2xM4(2), C2xC3:C8, C4.Dic3, C4xDic3, C4:Dic3, C6.D4, C2xC24, C2xC24, C22xC12, C8o2M4(2), C8xDic3, C24:C4, C2xC4.Dic3, C23.26D6, C22xC24, C12.12C42
Quotients: C1, C2, C4, C22, S3, C2xC4, C23, Dic3, D6, C42, C22xC4, C4xS3, C2xDic3, C22xS3, C2xC42, C8oD4, C4xDic3, S3xC2xC4, C22xDic3, C8o2M4(2), C8oD12, C2xC4xDic3, C12.12C42

Smallest permutation representation of C12.12C42
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 67 16 55)(2 66 17 54)(3 65 18 53)(4 64 19 52)(5 63 20 51)(6 62 21 50)(7 61 22 49)(8 72 23 60)(9 71 24 59)(10 70 13 58)(11 69 14 57)(12 68 15 56)(25 94 46 76)(26 93 47 75)(27 92 48 74)(28 91 37 73)(29 90 38 84)(30 89 39 83)(31 88 40 82)(32 87 41 81)(33 86 42 80)(34 85 43 79)(35 96 44 78)(36 95 45 77)
(1 25 10 34 7 31 4 28)(2 26 11 35 8 32 5 29)(3 27 12 36 9 33 6 30)(13 43 22 40 19 37 16 46)(14 44 23 41 20 38 17 47)(15 45 24 42 21 39 18 48)(49 82 52 73 55 76 58 79)(50 83 53 74 56 77 59 80)(51 84 54 75 57 78 60 81)(61 88 64 91 67 94 70 85)(62 89 65 92 68 95 71 86)(63 90 66 93 69 96 72 87)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,67,16,55)(2,66,17,54)(3,65,18,53)(4,64,19,52)(5,63,20,51)(6,62,21,50)(7,61,22,49)(8,72,23,60)(9,71,24,59)(10,70,13,58)(11,69,14,57)(12,68,15,56)(25,94,46,76)(26,93,47,75)(27,92,48,74)(28,91,37,73)(29,90,38,84)(30,89,39,83)(31,88,40,82)(32,87,41,81)(33,86,42,80)(34,85,43,79)(35,96,44,78)(36,95,45,77), (1,25,10,34,7,31,4,28)(2,26,11,35,8,32,5,29)(3,27,12,36,9,33,6,30)(13,43,22,40,19,37,16,46)(14,44,23,41,20,38,17,47)(15,45,24,42,21,39,18,48)(49,82,52,73,55,76,58,79)(50,83,53,74,56,77,59,80)(51,84,54,75,57,78,60,81)(61,88,64,91,67,94,70,85)(62,89,65,92,68,95,71,86)(63,90,66,93,69,96,72,87)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,67,16,55)(2,66,17,54)(3,65,18,53)(4,64,19,52)(5,63,20,51)(6,62,21,50)(7,61,22,49)(8,72,23,60)(9,71,24,59)(10,70,13,58)(11,69,14,57)(12,68,15,56)(25,94,46,76)(26,93,47,75)(27,92,48,74)(28,91,37,73)(29,90,38,84)(30,89,39,83)(31,88,40,82)(32,87,41,81)(33,86,42,80)(34,85,43,79)(35,96,44,78)(36,95,45,77), (1,25,10,34,7,31,4,28)(2,26,11,35,8,32,5,29)(3,27,12,36,9,33,6,30)(13,43,22,40,19,37,16,46)(14,44,23,41,20,38,17,47)(15,45,24,42,21,39,18,48)(49,82,52,73,55,76,58,79)(50,83,53,74,56,77,59,80)(51,84,54,75,57,78,60,81)(61,88,64,91,67,94,70,85)(62,89,65,92,68,95,71,86)(63,90,66,93,69,96,72,87) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,67,16,55),(2,66,17,54),(3,65,18,53),(4,64,19,52),(5,63,20,51),(6,62,21,50),(7,61,22,49),(8,72,23,60),(9,71,24,59),(10,70,13,58),(11,69,14,57),(12,68,15,56),(25,94,46,76),(26,93,47,75),(27,92,48,74),(28,91,37,73),(29,90,38,84),(30,89,39,83),(31,88,40,82),(32,87,41,81),(33,86,42,80),(34,85,43,79),(35,96,44,78),(36,95,45,77)], [(1,25,10,34,7,31,4,28),(2,26,11,35,8,32,5,29),(3,27,12,36,9,33,6,30),(13,43,22,40,19,37,16,46),(14,44,23,41,20,38,17,47),(15,45,24,42,21,39,18,48),(49,82,52,73,55,76,58,79),(50,83,53,74,56,77,59,80),(51,84,54,75,57,78,60,81),(61,88,64,91,67,94,70,85),(62,89,65,92,68,95,71,86),(63,90,66,93,69,96,72,87)]])

72 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G···4N6A···6G8A···8H8I8J8K8L8M···8T12A···12H24A···24P
order12222234444444···46···68···888888···812···1224···24
size11112221111226···62···21···122226···62···22···2

72 irreducible representations

dim111111111122222222
type+++++++-++
imageC1C2C2C2C2C2C4C4C4C4S3Dic3D6D6C4xS3C4xS3C8oD4C8oD12
kernelC12.12C42C8xDic3C24:C4C2xC4.Dic3C23.26D6C22xC24C4.Dic3C4:Dic3C6.D4C2xC24C22xC8C2xC8C2xC8C22xC4C2xC4C23C6C2
# reps1221118448142162816

Matrix representation of C12.12C42 in GL4(F73) generated by

27000
04600
00490
0003
,
0100
72000
0001
0010
,
63000
06300
00100
00010
G:=sub<GL(4,GF(73))| [27,0,0,0,0,46,0,0,0,0,49,0,0,0,0,3],[0,72,0,0,1,0,0,0,0,0,0,1,0,0,1,0],[63,0,0,0,0,63,0,0,0,0,10,0,0,0,0,10] >;

C12.12C42 in GAP, Magma, Sage, TeX

C_{12}._{12}C_4^2
% in TeX

G:=Group("C12.12C4^2");
// GroupNames label

G:=SmallGroup(192,660);
// by ID

G=gap.SmallGroup(192,660);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,56,477,100,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^12=b^4=1,c^4=a^6,b*a*b^-1=a^-1,a*c=c*a,b*c=c*b>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<